

Superconducting Tunnel Junctions

Guide : Prof. Sangita Bose, CBS Co-guide : Prof. Pratap Raychaudhuri, TIFR

PPr801 Presentation Gaurav Agarwal P181211

Acknowledgement

I feel grateful for coming across the following people who were very supportive and taught me a lot.

Prof. Sangita Bose and Prof. Pratap Raychaudhuri

Chandan Gupta and Pritam Das

John Jesudasan and Vivas Bagwe

Trajectory

- ➢ BCS theory and the band gap.
- Tunnel junctions and their importance
- Experimental setup and techniques
- > Data Analysis

Theoretical Backing

- > BCS Theory (1957)^[1]
 - <u>Motivation</u>
 - Experimentally T_c depended on atomic weight : connection of phonons and electrons.
 - Presence of critical temperature and magnetic field : Some thresholds/energy gaps.
 - Electrons seemed to occupy ground states somewhat bosonic behaviour.
 - Proposed 'Cooper pairs' : Electrons with opposite spins that pair up due to an attractive potential. These electrons are mathematically dealt with as 'quasiparticles'. The pair leads to the somewhat bosonic behaviour.
 - The pair is unlocalised and interaction happens with phonons in the lattice.
 - Energy required to break these pairs gives rise to the **band gap** (Δ) and critical temperature (T_c).

Theoretical Backing

BCS Theory (1957)^[1]

Bardeen, Cooper, and Schrieffer 1957
Michael Tinkham. Introduction to superconductivity.

What they are:

• Sandwich of normal metal-insulator-superconductor (in our case).

Working:

- Electrons quantum mechanically tunnel through the insulator and form a tunneling current.
- This tunneling current can be made directional by applying a potential difference.
- Presence of superconductivity introduces new physics.

Use Case:

- Band gap prohibits the existence of any electrons up till a certain energy level.
- Electron cannot jump from normal metal to superconductor unless it has the band gap energy.
- Since we are adjusting relative potential difference across the tunnel junction, we can **measure the band gap**!^[1]

Super-

conductor

(a) V = O

The tunneling current across the N-I-S junction is given by ^[1]:

$$I_{ns} = A|T|^2 N_1(0) \int_{-\infty}^{\infty} N_{2s}(E) [f(E) - f(E + eV)] dE$$
$$= \frac{G_{nn}}{e} \int_{-\infty}^{\infty} \frac{N_{2s}(E)}{N_2(0)} [f(E) - f(E + eV)] dE$$

$$\frac{dI}{dV} = G_{nn} \int_{-\infty}^{\infty} \frac{N_{2s}(E)}{N_2(0)} f'(E+eV) dE$$

The curve broadening with temperature is due to finite-lifetime effects of the quasi-particles, and is phenomenologically dealt with^[2]:

$$\frac{N_s(E)}{N(0)} = \begin{cases} \operatorname{Re}\left[\frac{Abs[E+i\Gamma]}{\sqrt{[E+i\Gamma]^2 - \Delta^2}}\right], & (|E| > \Delta)\\ 0, & (|E| < \Delta) \end{cases}$$

[2] R. C. Dynes et al. "Direct Measurement of Quasiparticle-Lifetime Broadening in a Strong-Coupled Superconductor". PRL 41.21 1978

Experimental Setup

Requirements: Fabrication, cryostats and instruments for measurement.

Fabrication:

- > Sputtering NbN on a MgO substrate at 600° C and 7 mTorr Ar+N₂.
- ➤ Cooling to 250°C and oxidation for 60 minutes.
- > Deposition of Ag in an evaporation chamber.

Experimental Setup

Cryostats: Two used - Dry and Wet systems. **Dry:**

Vacuum achieved : 10⁻⁶ mbar. Temperature achieved : 2.7 Kelvin.

Experimental Setup

Cryostats: Two used - Dry and Wet systems.

Temperature achieved : 2.2 Kelvin

Electrical equipment and techniques used:

Soldering: We use In-Ag wire for soldering onto contact points.

Four-Probe Measurements: All Voltage measurements are done using the four probe technique for eliminating contact resistance.

RT Measurements: Four probe measurement with constant current (~ 5 μ A) and varying temperature done on the heating cycle. Telemetry includes resistance, temperature, current and potential drop. Used to determine T_c.

IV Measurements: Four Probe current v/s voltage measurement at constant temperature. ~ 30 readings are averaged for one data point.

Equipment used: PID based 335 Lakeshore temperature controller, and Keithley 2400 current source meters (measure l.c. 5μ V, source l.c. 1μ A).

IV Measurement

Data Analysis - Example

The Tc is found to be 15.8 Kelvin.

- Needs more smoothening
- Andreev reflections. Punctured oxide layer.

Temperature (K)	Γ (meV)	±Γ	Δ (meV)	$\pm \Delta$
3	0.168	0.004	3.050	0.004
3.5	0.186	0.005	3.045	0.005
4	0.186	0.004	3.061	0.004
5	0.123	0.003	3.002	0.003
6	0.114	0.003	2.991	0.003
8	0.131	0.003	2.942	0.004
10	0.130	0.004	2.830	0.005
12	0.259	0.005	2.594	0.006
13	0.358	0.008	2.435	0.008
15	0.761	0.029	1.871	0.021
16	1.008	0.062	1.420	0.016
16.5	1.520	0.344	0.902	0.055

 $^{-2}$ At temperature close to the critical temperature, Γ (quasiparticle lifetimes) blows up.

Our analysis strongly agrees with the experiments we performed!

On the introduction of a magnetic field H, the quasiparticle energy becomes $E = (\epsilon_k^2 + \Delta^2)^{1/2} \pm \mu H$

Introduction of spin-polarisation in materials leads to^[1]:

$$dI/dV \propto N_{\uparrow} |M_{\uparrow}|^2 \int_{-\infty}^{\infty} \rho_{\uparrow}(E,H) f'(E+eV) dE + N_{\downarrow} |M_{\downarrow}|^2 \int_{-\infty}^{\infty} \rho_{\downarrow}(E,H) f'(E+eV) dE$$
$$\rho_{\downarrow\uparrow}(E) = \frac{\rho(0)}{2} \operatorname{sgn}(E) \operatorname{Re}\left(\frac{u_{\pm}}{(u_{\pm}^2 - 1)^{1/2}}\right)$$
$$u_{\pm} = \frac{E \mp \mu H}{\Delta} + \frac{\zeta u_{\pm}}{(1 - u_{\pm}^2)^{1/2}} + b\left(\frac{u_{\mp} - u_{\pm}}{(1 - u_{\mp}^2)^{1/2}}\right)$$

 ζ is the orbital depairing parameter, and b is the spin-orbit scattering parameter.

R. Meservey and P.M. Tedrow. "Spin-polarized electron tunneling". 1994
D. C. Worledge and T. H. Geballe. "Maki analysis of spin-polarized tunneling in an oxide ferromagnet". 2000

Data Analysis - Magnetic Field

[1] By Pritam Das, TIFR.

Data Analysis - Magnetic Field

The Zeeman splitting was found to be: 3 Tesla : 0.64mV 6 Tesla : 1.07mV 9 Tesla : 0.77mV 10.5 Tesla : 0.94mV

Conclusion

- Tunneling spectroscopy is important to study in superconductors.
- Demonstrated electron tunneling in NIS junctions.
- Extracted band gap energy Δ and quasi-particle lifetimes Γ in zero field.
- Band gap v/s T in perfect agreement with BCS.
- Used Maki theory to extract orbital depairing (ζ), spin-orbit scattering (b) and zeeman splitting.

Future directions

This analysis will further be applied to spin polarized tunneling, with ferromagnetic materials (Co) in place of normal metal (Ag).

Thank You!

Superconductivity

- Phenomenon of 'zero resistance' below a certain temperature.^[1]
- > The temperature is called **critical temperature**, depicted as T_c .
- The sample admits 'perfect diamagnetism'. It expels all the magnetic fields. Penetration depth is observed as the field decays inside.
- Cooling in the presence of magnetic field also leads to expulsion. It is called the Meissner Effect.

[1] H. K. Onnes, Commun. Phys. Lab.12,120, (1911)