Summer Project
Report

Brownian Motion

Integrated Masters in Sciences
in
Physics

Submitted by
P181211 - Gaurav Agarwal
Under the guidance of
Prof. Tridib Sadhu, TIFR Mumbai

..Promgy,
() /79

- « .f
Department of Physical Sciences,

UNIVERISTY OF MUMBAI - DEPT. ATOMIC ENERGY
CENTRE FOR EXCELLENCE IN BASIC SCEINCES
Mumbai

O
90‘@

9ous\

N u rtur //70

Summer 2021

Acknowledgement

I would like to thank Prof. Tridib Sadhu, TIFR exclusively for this project,
as he agreed to guide me through an online mode and introduced me to his field.
Every email I sent was followed by recognition and assurance which boosted my
spirits. I also appreciate the help I got from my friends Lokendra Meena and
Tharun Krishna for helping out in minor hiccups.

Contents

1

Brownian Motion

1.1 Formal definition
1.2 Statistical properties
1.3 Background
1.3.1 Limit of random walk
1.3.2 Einstein’s treatment (brief)
1.4 Langevin Model
1.4.1 Fluctuation - Dissipation balance . . .
1.4.2 Velocity correlation
1.4.3 Mean and variance of velocity
1.4.4 Mean and variance of position
1.4.5 In three dimensions

1.4.6 Probability density function of velocity
1.4.7 Probability density function of position

1.5 Fokker Planck Equation
1.5.1 High friction limit

Simulations of Brownian Motion

2.1 Random walk

2.2 Standard Brownian Motion
2.2.1 Khinchin’s Law of Iterated Logarithm .
222 Arc-SineLaws
2.2.3 S.B.M. with reflecting walls

2.3 Euler-Mayurama method
2.3.1 Without Drift
232 With Drift
2.3.3 With reflecting walls

Fractional Brownian Motion

Simulation of fBm

4.1 Hosking’s Method
4.2 Cholesky Method
Code
51 Random Walk
5.2 Standard Brownian Motion
5.2.1 Khinchin’'s Law
5.2.2 with reflecting walls
5.3 Euler-Mayurama
5.3.1 without drift
5.3.2 withdrift
53.3 withwalls
54 fBm

i

11
12
13
14
14
16
18

21

23
23
26

1 Brownian Motion

A particle in fluid executes Brownian motion when its mass is much larger than the mass
of fluid particles. This is fundamentally modeled by the Langevin Equation. Naturally,
given the system, it relates well to the diffusion process and constant given by Einstein’s
treatment. The parameters of both treatments are related by the fluctuation-dissipation
theorem. Brownian motion is one of the simplest ways one can study non-equilibrium
systems.

1.1 Formal definition

Brownian motion is mathematically defined as a continuous time, stochastic process and
the standard Brownian motion is also called a Wiener process.
The Wiener process is defined by following statistical properties:

e W,=0, i.e. the motion starts at origin.
e IV, is continuous (but nowhere differentiable).
e IV, has independent increments.

o W, —W,~N(0,t—5),0<s<t.

1.2 Statistical properties
Let W; donate the Standard Brownian Motion (continuous time, stochastic process).
(i) W,o=0

(ii) Brownian motion W(t) is normally distributed W; ~ N(0,).
The increment is also normally distributed, W; — Wi ~ N(0,¢ — s).
Expectation values: E[W (t)] =0 and E[W (t) — W (s)] = 0.
Variance: Var[W(t)] =t and Var[W(t) — W(s)] =t — s.

(iii) The increments are stationary and independent.
Wt — WS ~ N(O,t— S) = Wt+a — W5+a ~ N(O,t—S)
and, Wy, — Wy, , Wy, — Wy, ... Wy, — W, are all independent.

(iv) Covariance: Cov{W(t), W(s)} = min{s,t}

(v) W, is a Markov process i.e. the future of motion only depends on the current

position of the particle.
P(Wt = k’|VVt_1, Wt_g c. Wto) = P(Wt|Wt_1)

(vi) Brownian Motion is a martingale process. With every new increment, the expecta-
tion value of the motion changes to the current position.

S EW(E +)| = W

(vii) The auto-correlation function is : < W;Wy >= min(t,t)

Other properties:

(viii) W; is non-differentiable at any point (though continuous).
The measure of ’jaggedness’ is simply given by:

[Wite = Wil < Cle|?, where < 5

]].‘.ase%O,W—M)o.

. dW almost acts as V/dt.

(ix) The above is formalized in Ito calculus, which states for a Wiener Process that the
product of two time intervals is equal to the overlap of the two intervals.
oWy — W) x (We, — W) = overlap between (t1,12) & (¢3,t4)
= dW dW = dt

(x) Law of iterated logs: The law states that the Wiener process falls in the € range
of j:y/Ztloglog% when % — 0.

1.3 Background
1.3.1 Limit of random walk

Brownian motion can be derived as a limit of Gaussian random walks. In one dimension,
let a particle move Az left/right after At time. Let the random variable

Y _ +1, if particle moves right
‘| —1, if particle moves left

All X;'s are independently distributed. Let P[X; = 1] = p and P[X; = —1] = 1 — p.
Assuming n = t/At is an integer, the particle’s position with time is Y (¢) = Az(X; +
Xy ...+ X,), and therefore,
E[Y (t)] = nAz(2p — 1)
VarlY (t)] = n(Az)*(1 - (2p — 1)°)
Since the probability is Gaussian, and Brownian motion is a continuous process, if we
make the parameters here continuous, i.e. Az = ov/At and p = [1 4 (u/0)V/1]/2 we get:

EY(t)] =nAx(2p—1) — ut
Var[Y (t)] = n(Az)*(1 — (2p — 1)?) — o*t
as At — 0.

Therefore, random walk is simply a version of discretized Brownian motion, on setting
= 0 and variance 1.

1.3.2 Einstein’s treatment (brief)

Einstein put forward the formulation of a diffusion equation for Brownian particles, con-
taining a parameter called the diffusion constant which is related to measurable physical
quantities. An interesting application was to verify the size of atoms.

Considering a Brownian particle suspended in a fluid of other smaller particles we can
say that th
The relation is: D = gBT
mna
(ratio between the thermal energy and Stokes drag)

2

1.4 Langevin Model

Langevin Model is used to study Brownian motion with the help of calculus. The model
is considered to have a large particle (of interest) immersed in a fluid of much smaller
particles (atoms). The smaller particles constantly collide with the Brownian particle.
These collisions are random and rapid due to density fluctuations within the fluid. The
time scale of the smaller particles is around 107!2? seconds, the relaxation time 75 of the
particle velocity is around 1073 and the relaxation time of the Brownian particle (time
to diffuse it’s own radius) 7, is much higher in seconds.

Considering the difference in these time frames, we can easily consider the collisions to
be totally instantaneous random fluctuations in our model. Let the fluctuating force be
denoted by 7(t). We get

dv

m% = 77(75)

which implies that the particle can acquire infinite energy, and the system is over-
driven(result can be obtained by solving the differential equation above and calculating
rms velocity). Therefore, it is intuitive to add a friction force that is proportional to the

velocity. This gives us:

dv
- 1
mdt ~ymu + n(t) (1)

In a real system, fluctuating force cannot be true, however, for modeling it is our
best bet. Effects of fluctuating force can be summarized by giving its first and second
moments as time averages over an infinitesimal time interval.

<n(t)>=0

<n(t)n(t") >=To(t — 1)

This is to say that n(t) is a delta correlated (i.e. no relations between collisions at time
t and t’), Gaussian stationary white noise. Here, I" is a constant, a measure of strength
of the fluctuating force and has the dimensions of time inverse.

On solving the equation [1], we get

t , t,
v(t) = ve " —I—/ eVt % mdt’ (2)
0 m

1.4.1 Fluctuation - Dissipation balance

Since, equation (2) doesn’t give us any great results to verify the model, we will find the
rms velocity of the system. Now, equation 2 squared on both sides will have three terms
on the right side:

(v(t))*:
Ist term : v2e~2" which decays over time.
2nd term : fg dt’%/)e—w(t—t’) f(f e’ %e—w(t—t”)

3rd term (cross term) : 2u,e” 7" fg e x %ﬂ)dt’

On averaging over time, the third term vanishes as < n(t) >= 0. The second term be-
comes:

= L [dt'e) [T e TS (¢ — t7)
— E (1 — exp(—291))
Hence, time average of square of the velocity becomes:

< (v(t))? >=v2e " +

s (1= exp(=231) g

In the long time limit, ¢ — oo, the first term vanishes, and

r
< (v(t)* >=
OO >= 5
However, a long time average is also the equilibrium ensemble average. And employing
kinetic theory, we have < v2, >= 2T,
r kgT
=< (v(t)? >=< v} >= _ B
OO >=< v}, >= 5o = 2
= T = 2mkpT~ (4)

Result (4) establishes a relation between the strength of the fluctuation force (I') and
drag (7). It serves as a necessary condition for the system to be neither decaying nor
over-driven. Due to this it is also named as the fluctuation-dissipation theorem.

1.4.2 Velocity correlation

We had from equation (2):

t /
t

v(t) = voe " +/ e 7 x mahf'
0 m

- , F t t! o
= ’U(t)?](t,) — U§€—2’Y(t+t) + ﬁ/o dtl/o dt2€—7(t—t1)€ YE=t2) §(ty —t3)

r

_e—w(t—i—t’) (€2vt’ . 1)

= WD) = vfe T + oo

Substituting I" from equation (4):

U(— t)U(t/) — 'U(Q)e 27(t t/) _.I_ k e ”Y(t‘f‘t/)(EQ’Yt/])
- knT ~ / kB l
U()U() — ('UO — _m)6 _I_ _m e—y —

Tim Averaging over long time, the velocity correlation becomes:

kT ,
< v(t)o(t') >= %e‘“’(t‘” (5)

L

(t-t")

Here, velocity comes out to be exponentially correlated, unlike the random fluctuation
n(t).

n(t) = Gaussian white noise, stationary, delta correlated, Markov process.

4

v(t) = Gaussian, stationary, exponentially correlated, stationary process.

A Gaussian, continuous, stationary, Markov process which is exponentially correlated
(velocity in this case) is called a Ornstein—Uhlenbeck process.

1.4.3 Mean and variance of velocity

We know from equation (2)
t t/
v(t) = v,e +/ e x m(Jlt’
0 m

and since < 7(t) > = 0 we have:

v(t) = voe (6)
and from equation (3) we have:
kgT kgT . _
)2 = 2 2t
W@ = "2 4 (2 -)
Hence variance of velocity is simply:
kgT
Varfo(t)] = (v(1))? — (0(#)? = ——(1 — e™>") (7)
m

1.4.4 Mean and variance of position

Using #(t) = v(t) we can get from (2):

1 / "
z(t) = 2o + —v,(1 —) / -7 / e’ dt”
Y

x(t) =x 1v —e) 4 = ! e~V (t=t)
= a(t) =2+ vl >+vén@m |t (8)

On averaging the random fluctuations vanish, and we get:

2(D) = o + —v,(1 —) 9)
Y

For variance, squaring (8) we get:
2

o¥o 1 [P / fn(t” "
ZoU (1_677,5)_’_”_(2;(1_67%)2_’__2 / 7]() (1_677(t7t))dt// 77()(1_677(t7t))dt”
v v 7" Jo 0

() = - -

2

s e

=< (22(t) > =25 + 2 523 29t — 3+ 4e™ 7 — e 2]

Var[z(t)] = 22(t) — z(t) =

r

iy [29t — 3 + 4e™ 7" — e (10)
Displacement:

We define the displacement of the Brownian particle as:

z(t) — z(0) = /0 dtiv(tq)

X(t) = z(t) — z(0)
then,

t t
<(X()?> = / dty / dty < v(ty)v / dt / dtz g
0 0

QkBT

= < (X)) > t—14e
(XWF > =22 ht =1+
Hence,
as yt — 0
< (X)) >— kel =< v® >, 1
m
as vyt >>1;

2kBTt

<X T

Thus, initially the mean square displace-

t ment behaves very predictably, i.e. equi-
librium velocity multiplied by the time, however with time, the mean square displacement
becomes linear.

Also, v(t) = v,e ™

= X(0) =2(1-e)

1.4.5 In three dimensions

We just convert the same equation into 3 dimensions as follows:

o(t) = yoit) + L2

where, < n;(t) > =0 and < n;(¢t)n;(t') > =T10,;6(t —t') , where i=(1,2,3).
(This assumes that the coordinates are completely uncorrelated).

kT o
=< v(t)(t) > = §i;—=—e 1N
m

If the coordinates are correlated - for example in case of a presence of a magnetic field -
then the above equations change.

1.4.6 Probability density function of velocity

Considering velocity to be Gaussian at all times (except at the start where it is a dirac
delta), we can substitute the mean velocity and variance of the velocity from results (6)
and (7) in a normal distribution to get a conditional probability distribution (for one
dimension) as follows:

m 1/2 —m(v — v,e)2
o(v,t|v,) =) exp) (11)
2nkpT (1 — e—271) kT (1 — e—21)

1.4.7 Probability density function of position

Position again is assumed to be a Gaussian at all times, except at the initial moment
where it is a dirac delta. Using results from (8) and (10) we have:

2m2~3 1/2
224t — 3 4+ 4e— 7t — e~ 271]
—mfe — 3o + Lug(1 — e)2
X exp t
I'[24t — 3 4 4e—7t — e—271]

o, tla,) = [
(12)

1.5 Fokker Planck Equation

A Langevin equation for a random variable (:

¢ = f(¢) +9(Q)E()

where ¢(() is multiplicative noise and £(t) is a delta correlated Gaussian white noise, then
it has a probability distribution function p((,t|(y,0) satisfying the following equation
(which is called the Fokker Planck equation):

o __0(Qp) | 1*((9(Q)Pp)
ot ot 2 0¢?

where p((,0) = (¢, o).

For the Brownian motion case (taking VT as the unit strength of noise) ,

VT
) = — —&(t 13
0= —yv+ ——E(1) (13)
We have the following Fokker Planck equation:

op _ (9(vp)+ r 9%

ot i ov 2m? Juv?

and on solving we get back equation (11) exactly as in our previous assumption.

Infact, we can also get the fluctuation dissipation result from equation (4) just by taking
the limit to the probability distribution at ¢ — oc.

(the left part becomes 0, as % = 0 and we are just left with a second order differential
equation in one variable.)

1.5.1 High friction limit
Starting from the equation,
. VT
b ==+ -—¢(t)
m
In high friction limit, v¢ >> 1, therefore, we can ignore © term:

VT

VU:Wf(t)
VT
=T = mvg(t)

= i = V2DE(t)

On comparing with the generalized Langevin Equation, f({) = 0 and ¢g(¢) = v2D. The
corresponding Fokker Planck equation is:

2
p <t <t Op(z,t) :D@
. ot 0x?
0
which is the standard diffusion equation
/N giving us:
AN
P eI 1 _ (z—xq)?

e~ 4Dt

X p(x,t) = \/m

(We can add a drift term here by adding a driving force/potential.)

2 Simulations of Brownian Motion

2.1 Random walk

As Brownian motion can be thought of as an extended limit of a random walk (in contin-
uous time and space), the following is a simple simulation of a random walk in discretized
time and continuous space in 2 dimensions.

We can simply choose a starting point and draw increments in position independently
from both x and y direction from a normal distribution.

The code is at: 5.1 Github

The code gives us the above graph of the random walk, initiated at z,y =0 at t =0
seconds and progressing in both x an y axis.

When we let the random walk evolve for a longer time, such that each unit time be-

comes less and less apparent, the motion as a whole assumes the properties of Brownian
motion.

Random Walk

20 A

—-20 1

—-40 A1

—60 1

_80 .

-80 -60 —40 =20 0 20

Figure 1: Random Walk (discrete time and continuous space)

2.2 Standard Brownian Motion

The standard Brownian motion or the Wiener process can be simply simulated with
adding random normal noise with mean 0 and variance dt to the system.

We follow the equation (with strength of noise = 1):

i =n(t)
= dx = dW (t)
where dW is the Wiener process. On simulating this we get the following results: The
code is at: 5.2 Github

Brownian Motion

100 4 —— Calculated variance from 10000 runs.

80 A

60 -

>]
‘O
@)

E J

> 40 -

20 A

O -

0 20 40 60 80 100
Time (s)

Figure 2: In the figure, variance calculated from 10* runs is plotted. One of the samples

is also shown.

In the above image, variance o clearly goes as 't’.

10

2.2.1 Khinchin’s Law of Iterated Logarithm

The law of iterated log describes the magnitude of the fluctuations of a random walk.

Khinchin generalised it to the sums of independent and identically distributed random

variables with zero mean and bounded increments.

The law states that the lim sup of absolute of the sum of n random variables approaches
2nlog(logn)) i.e. if X,, is a random variable, then for B, = X; + X5 ...+ X, we have:

: +5,
lim sup =1 (a.s.)
n—oo 4/2nlog(logn))

This also implies that the standard Brownian motion should not cross the boundary
set by the iterated log as t — 0.
We can demonstrate this using code. On simulating multiple instances of the BM for
long times, and keeping track of the instances that cross the boundary, we see a decrease
in the number of motions that have position higher than the Khinchin boundary as time
progresses significantly.
Click here to go to code : 5.2.1 Github

Probability of Brownian motion crossing
the Khinchin's law boundary - 10,000 samples

0.225 A

0.200 A

0.175 A

o o
= =
N ul
vl o
L L

Probability

0.100 A

0.075 A

0.050 A

0 1000 2000 3000 4000 5000
Time

Figure 3: The probability of a BM having position greater than that of Khinchin’s bound-
ary decreases with time approaching zero. The above plot simulated 10,000 BM(s) till
5000 seconds with a time-step of 10~% seconds.

11

2.2.2 Arc-Sine Laws

Arc sine laws relate the path properties of the Wiener process to the arc-sine dis-
tribution.

If we assume that (W})o<i<1 is the one dimensional Wiener process then the fol-
lowing laws hold:

e First Arcsine law:
The proportion of time that the Wiener process is positive follows an arcsine

distribution.
T, ={te[0,1]: W, > 0}

e Second Arcsine law:
The last time that the Wiener process changes sign follows an arcsine distri-

bution.
L =sup{t € [0,1] : W, =0}

e Third Arcsine law:
The time at which the Wiener process reaches its maximum follows an arcsine
distribution.

Winae = sup{Ws : s € [0, 1]}

Click here to go to code : 5.2.1 Github

We use the above code, and find the following results:

First arcsine law - 10* samples Second arcsine law - 10 samples

Probability
Probability

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time Time

Third arcsine law - 10* samples

~

o

v

IS

These distributions were obtained for the
corresponding parameters of positive time,
last time of sign change, and time of maxi-
mum position for the first, second and third
arcsine laws respectively. Distribution was
00 02 04 06 0s 10 calculated over 10* sample BM runs.

Probability

N w

-

12

2.2.3 S.B.M. with reflecting walls

On implementation of reflecting walls with standard BM, we restrict the particle
in only a continuous set of allowed positions. This can be done by folding the
space over at the walls, such that the Brownian particle moves undisturbed.

Click here to go to code

5.2.2

We obtain the following results:

Position

0.4 1

0.2 A

0.0 A

—-0.2 1

—-0.4 1

Brownian Motion

1.00 1.25

Time (s)

0.50 0.75

1.50

1.75

Github

This represents the BM trapped inside walls at -0.5 and 0.5.
The BM is simply folded over after if reaches any of the walls.

Probability

Position distribution at different times

124

10

©

— t=0.00
-- t=0.03
—-- t=0.05
— t=0.09
-=-- t=0.10
—-= t=0.15
t=2.00

-1.00 -0.75 -0.50 -0.25 0.00 0.25

Position

(a)

Probability

o
L

S
L

Position distribution at different times

— t=0.00
—— t=0.03
— t=0.05
— t=0.09
— t=0.10
— t=0.15

t=2.00

T T
0.40 0.45

Position

(b)

T
0.35

As soon as the Brownian particles diffuse and touch the boundary, the probability
distribution flattens out and is not Gaussian anymore. The flattening is shown

with probability distribution at different times in (a).

magnified at boundaries.

13

(b) shows the flattening

2.3 Euler-Mayurama method

Euler Mayurama method is a method to approximate the numerical solution of a
stochastic differential equation.
Considering the equation:

dXt = a(Xt, t)dt + b(Xt, t)th

given an initial condition on X, and where W, stands for a Wiener process, then
the Euler-Mayurama approximation of X is the Markov chain as follows:

e Divide the total time into ordered intervals of small times At.
e Recursively define X,, 11 = X,, + a(X,,, t,) At + b(X,,, t,) AW,, where AW is
a random normal [.I.D variable with zero mean and variance At.
2.3.1 Applied to Langevin equation without drift

The Langevin equation (Ornstein-Uhlenbeck solution) we had in equation (13) is;

VT

r
U= —yv+ Wﬂt)

r
= dv = —yvdt + \/W_f(t)dt
where £(t)dt = dW, (a Weiner process). Hence,

r
= dv = —vyvdt + \/—_th
m
We can simulate the above using the following python code:

Click here to go to code : 5.3.1 Github
As apparent in the code, we have set our physical constants (I, v, m) all as 1, and
set initial condition as v, = 0, and evolve 10* Brownian motions till 1 second in
the intervals of 1072 seconds to get a good result in the statistics.

It’s easy to see in figure 6, the model is evolving correctly, with the variance
being almost a perfect match from the analytical calculations in equation

(7) (Var[o(t)] == 85 (1 — 7).

m

On evaluating the probability density of the velocity distribution at different times
we get the results in figure 6 which come out to be exactly as expected i.e. gaussian
at all times.

14

Brownian Motion

0.8 4
0.6
0.4 4
2]
3 021
Q 4
>
0.0 A
-0.2 A
] —— Calculated variance from 10000 runs.
1 —— Theoretical variance
_04 i T ' ' ' T y y y T 4 4 4 T))) T y y y T
0.0 0.2 0.4 0.6 0.8 1.0
Time (s)
(a) One of the runs of Langevin Equation (green) and associated variance
Velocity distribution at different times
12 — t=0.00
-—=- t=0.05
—-= t=0.15
10 1 — t=1.00
B -
Z
E
2 67
B
=1
4 -
2 -
0 -

T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Velocity

(b) Probability distribution from 10* runs at different times

Figure 6: Results from simulation of Langevin Equation with Euler Mayurama
method without drift term.

15

2.3.2 Applied to Langevin equation with drift

We can directly use the results from above, with a minor difference;

a(Xy,t) = —y(v — p)

where p = kBTT is the average velocity. Since I' = 2kgT'my is already defined, we

use I' = 4py and have the following equation:

VT

dv = —y(v — p)dt + —dW;
m
We can simulate the above using the following python code:

Click here to go to code : 5.3.2 Github

In the code, physical constants are (= 30,y = 3, m = 1) and initial condition
as v, = 0. We evolved 10* Brownian motions till 5 seconds in the intervals of 1073
seconds.
We get the following results :

It’s easy to see in figure 7, the model is evolving correctly, the motion assumes
values near the average velocity, with the variance being almost a perfect match

from the analytical calculations in equation
(7) (Varlo(t)) = S47(1 - 1)

m

On evaluating the probability density of the velocity distribution at different times
we get the results in figure 7 which come out to be exactly as expected i.e. gaussian
at all times and gradually shifting towards the mean of v = 30.

16

Brownian Motion

60 -

wn
o
M

N
o
P R T

Velocity
w
o

o

N
o
o

=
o
P

1 —— Calculated variance from 10000 runs.
01 —— Theoretical variance
i Mean velocity

0 1 2 3 4 5
Time (s)

(a) One of the runs of Langevin Equation (green) and associated variance

Velocity distribution at different times

0.6 - — t=0.00
-—- t=0.05
—-= t=0.15
0.5 1 —— t=5.00
0.4
2
T 0.3
o
g
0o
0.2
01 T /\’\
/ N
. R
l'*.’-.-’ \\»\. \. d
0.0 - — _—
T T T T T T T T
—-10 0 10 20 30 40 50 60

Velocity
(b) Probability distribution from 10% runs at different times (t in seconds)

Figure 7: Results from simulation of Langevin Equation with Euler Mayurama
method with the drift term.

17

2.3.3 With reflecting walls

To implement walls we have to keep track of the position, and simply reversing
the velocity if particle crosses the wall. The code used above can be modified to
do so.

Click here to go to code : 5.3.3 Github

The logic is to construct a boolean array containing the check if the particle’s
position is outside of the walls. If so, the boolean array is multiplied element-wise
by the velocity array (having the information of velocities for all the number of
trials at a particular time). This gives us an array with only the velocities that
need to be reversed by multiplying -1. Rest of the velocities are simply evolved
normally obeying the Langevin equation. Then the reversed velocities are added
to the next iteration of velocities, to combine all the reversed and evolved veloc-
ities into one array.With Numba and Numpy, the code is fast enough to do 500
seconds of evolution with a 0.001 second time step for 10,000 particles in about
190 seconds.

Setting the physical constants, v = 0.01, 4 = 2 and m = 1, setting the walls to
be at x = +1 and evolving 10,000 particles for 10 seconds we have the following
results:

Brownian Motion(velocity)

I T ! ! _' T ! ___L___L___L _ _ N
1 —— Velocity R _ _ .
T — calculated Variance | [T
--——— Theoretical Variance {--

Velocity

Time (seconds)

Purple line depicts the Brownian motion of one of the particles. The jumps seen
in the velocity is when the particle hits a wall. As seen, the variance (calculated
over 10,000 runs) matches perfectly with the theoretical value.

18

Probability density of velocity over 10000 runs

20.0 — t=0.00
] --- t=0.05
17.5 7 —-- 1=0.50
] — t=2.00
15.0 1 —-- t=10.00
12.5
Z
9 10.0]
e}
2]
& 757
5.0 4
2.5 1]
1 11~
i /1 .
0.0] =m———ErEs
-' T T T T T T
-1 0 1 2 3 4
Velocity

The graph depicts the distribution of velocity over ten seconds of run.

Brownian Motion (position)

1.00 1 T

0.75 +

0.50 i

025 1 . !

0.00 +——

Velocity

—025] ' i

-0.50 + . :

—0.75 1 -

-1.00 + . .

0 2 4 6 8 10
Time (seconds)

Blue line represents the position of particle with the velocity in 7?7. The reflections can
be seen clearly.

Position's probability density over 10000 runs

259 — t=0.00
——- t=0.05
—-- t=0.50
201 — t=2.00
—-- 1=10.00
2 15 -
z
2]
£ 10
5 -
AlS
pa S
0_ —

T
—2.0 -1.5 -1.0 —-0.5 0.0 0.5 1.0 1.5 2.0
Position

The probability density of the position of the particle trapped between the walls at x=-1
and x=1.

19

There is not much change if the simulation is run for 500 seconds

0 ST 01 S0 00 50— 01~ S1- 0z-
— - Fo
/ \
‘e
HEl
| L
)
Lot
kSt
0002=3 — Foz
00°G=1 --—
05°0=1 ---
000=3 — T4
sawi3 Jua1aIp 1e Aysuap A3jigeqold s,uoliisod
005 00% 002 001 0
1
00'T—
). ——e
| o
. - SL0-
: = 050~
i " i o
HHH — ST 0-
- 000
- ST0
“F 050
m g |
H H - T SL°0
1 InHIRE | [
u , - f]
- -] e b 00t

(uonisod)uonow uejumolg

L 9 S 14 € Z 1 0
e o
T4
\
\
- x4
Fv
9
-8
00'0¢=} — FOT
006=1 --—
05°0=1 -~~~
000=3 — FZT
Sawli} JualayIp e Aisuap Ayjiqeqold s,A3d09A
0114 oy 09¢ 00€ ore 08T 0zt 09
. ! _
14
Fr-i--i souepiep jeopsuosyy - .
|1--1° aoueuep pajeindje) —— i e
- ApopA —— I
i T
i ; -
e | 1T i ;
[S i H -
t — 0 i | . - — -
K thoEs A if- : -
it - M ! o -
T Ry 0 T f —r 0
§ i o1 1 i
i B 1
a_ |4 Il R - | H
[[- o
| -
| | f
ﬂ Ui} [4
{ €
]
1
i .
e “ B = q
[

(A3100[3A)UOIION UBlUMOIG

20

3 Fractional Brownian Motion

A fractional Brownian motion (fBm) is a centered Gaussian process {B{!,t > 0}
defined by the following covariance function:

1
E[BI'B/| = 5(t*" + s — [t = s (14)
where H € (0,1) is a parameter called the Hurst index.

Since specifying a distribution of a Gaussian process only needs defining its
mean and covariance, therefore, for a particular H, we have a uniquely determined
BH.

The covariance function defined above has to be non-negative definite if fBm exists.
Also, for H = 1/2, the covariance :

1
E[Btl/Qleﬂ] = §(t+ s — |t — s|) = min(s, t)

which defines the standard Brownian Motion. Therefore, fBm serves as a gener-
alization of the standard Brownian motion.

The increments of fBm are defined as B — BH for t > s. The covariance
functions between increments comes out to be:

E[(B = By)(By; — By)l = EB B, + B{B_, — B{ By, — BB

using (14) we have:

1
E[(B[l=B;))(B,; —By})] = §W1—52|2H+|t2—81\21{—Itl—t2I2H—181—52|2H) (15)
This gives us the variance of increments as (t; = t2 & s1 = s5):
o = B((B{{ — By))’] = [t — s1|*"

which again corresponds to standard Brownian motion at H = 1/2.

Properties:
e B[has stationary increments. (evident from the variance above)
e B =0, E[BlY] =0 for all t > 0.
e E[(BF)?] = fort > 0.

21

e BH has a Gaussian distribution for ¢ > 0.

e fBm is neither Markov nor Martingale (unlike standard B.M.).

Dependence of increments: From equation (15) we can have the covariance
negative or positive.

For H € (0,1/2); we have E[(B{f — BI)(B[l — BI)] > 0.

This essentially means that if the fBm was increasing in the past, the trend is
likely to continue.

However, for H € (1/2,1); we have E[(B} — BE)(Bf! — BI)] <.

This essentially means that the fBm is likely to break it’s current trends in the
future. As a result, the motion looks more jagged.

Hence, higher the H, smoother the fBm becomes. For H=1, fBm simply becomes
a linear function of the Gaussian noise.

22

4 Simulation of fBm

Fractional Brownian motion can be simulated in discrete time. Since it is the cu-
mulative sum of Fractional Gaussian noise, our aim should be to calculate 'fGn’.
Notation:

Yo, Y7 ... Y, represents the fBm.

Xo, X1...X, represent the samples of fGn.

We can get samples of fGn using three well known exact methods : Hosking’s,
Cholesky’s and Davies & Harte’s method. Below are the first two:

4.1 Hosking’s Method

This method is used to generate X, given X,,_; ... X, and can be used ot generate
any stationary Gaussian process (in this case fGn).
Let (k) == E[X,X,:x| be the covariance function corresponding to the equation

(15).

Then the (n+ 1) x (n + 1) covariance matrix is:
90 A-D A=2) .. A(-n)

F(n) = 7('1) 7(‘0) ’Y(fl) & ’V(—?”f +1))i
W) A=) A=) A0)

Assume a (n + 1) column vector :

v(n+1)
Then the matrix I'(n + 1) can be written in block form as follows:
(1 cln)
0= () 1)
Then, the inverse of I'(n + 1) can be calculated as follows:

4 1 ['(n) —c(n)
o+ 1) ‘Wmn+w|(wm> 1)

) L 1 [(n) —c(n)
= Tl)™ = e)

23

o2 \—d(n) o2T'(n)~' +d(n)d(n)

n n

1 _ /
:>F(n+1)_1:—(1 () >
where 02 = 1 — ¢(n)'T'(n)"tc(n) and d(n) = T'(n)e(n).
Using the above equation, we can get the following:
Xng1 —d(n) z)?
(Xt 0T+ 1t () = e 202

po +2'T(n) o
where x = (Xn Xn-1) --- XO).

The above equation clearly is in the form of the Central Limit Theorem, and
implies that X, is a random variable that is Gaussian distributed with mean u,,
and variance o2 as follows:

iy, = d(n)'xz = c(n)T'(n) 'z

02 =1—c(n)T(n) " e(n)

The above can be done recursively to get the distribution parameters for the next
random variable. To do this, one needs to calculate d(n + 1) (for mu) and o2,
recursively. With a bit more algebra, one obtains the following recursive relations:

2 s (v(n+2)—1)?
Ont1 = Op — 2

d(n+1) = (d<n) - ¢;f(n)d(n))

Where,

(n+1)x(n+1)

24

For the simulation, we have to assume a initial sample Xj to start off.
From this we can get the following:

to = (1) Xo
o =1-7(1)°
d(0) = ¢(0) = (1)

and we can sample the Gaussian random variable X; from this, and then get
1, 0% and so on.

On simulating we obtain the following results:

20 — H=02
10
0
~10
~20
0.0 0.2 0.4 0.6 0.8 10
a0 — H=05
30
20
10
0
0.0 02 04 06 08)
0 — H=08
-100
~200
-300
—~400
0.0 02 04 06 08 10

Figure 11: fBm simulated from Hosking’s recursion method for different Hurst
values (0.2,0.5,0.8).

It is easy to see that the motion for H < 0.5 is jagged, whereas H > 0.5 follows
it’s previous trend and is positively correlated.
Click here to go to code : 5.4 Github

25

4.2 Cholesky Method

Extending from the Hosking’s covariance matrix itself, we can decompose the I’
matrix in the form of L(n)L(n) such that L(n) is a lower triangluar matrix. This
is called the Cholesky decomposition, and exists whenever the matrix is symmetric
and positive definite (which T is).

Once the I' matrix is broken down and L(n) is found out, we can easily find X,,,;:

n+1
Xoy1 =Y = ly1aVi
k=0
Click here to go to code : 5.4 Github

The only problem with this method is that it is slower than Hosking method. We
obtain the following results:

5.0 —— H=0.2
2.5
0.0
—-2.5
-5.0
-7.51
0.0 0.2 0.4 0.6 0.8 1.0
o4 — H=0.5
=10
-20
—30
-40
=50
0.0 0.2 0.4 0.6 0.8 1.0
—— H=038
250
200
150
100
50 4
o4
0.0 0.2 0.4 0.6 0.8 1.0

Figure 12: fBm simulated from Cholesky’s decomposition method for different
Hurst values (0.2,0.5,0.8).

26

21

5 Code

5.1 Random Walk

import matplotlib.pyplot as plt
import numpy as np

samples=int (1) # number of motions to simulate
time_limit=int (10000) # number of steps each brownian motion is
evolved for

variance=1 #the variance of the normal distribution from which the

increments are taken
since the increments ~ N(O,t-s); here t-s is 1 unit
initial_x, initial_y = [0],[0]

SAMPLEX = np.empty((samples,time_limit+1)) #store the position of

the particle
SAMPLEY = np.empty ((samples,time_limit+1))

5 for i in range (0, samples):

x_inc = np.random.normal (0,variance,time_limit) #get
increments from a normal distribution
y_inc = np.random.normal (0,variance,time_limit)

SAMPLEX [i] = np.append(initial_x, np.cumsum(x_inc)) #set
starting point to zero, then append to it

SAMPLEY [i] = np.append(initial_y, np.cumsum(y_inc)) #final
position of particle at each point

plt.plot (SAMPLEX[i],SAMPLEY[i], c=’blue’, linewidth=0.3)

plt.title(’Random Walk’)

; plt.xlabel ("X")

plt.ylabel ("Y")
plt.savefig(’randomwalk.png’,dpi=600)

5.2 Standard Brownian Motion

import numpy as np
import matplotlib.pyplot as plt
from numba import jit

num_sims = 10000 # Number of runs to evaluate
t_init = 0
t_end = 0.2

27

dt
N

0.0001

int ((t_end - t_init)/dt) #this many grid points will be
calculated

y_init = 0

ts = np.arange(t_init, t_end+dt, dt) #timestep array
ys np.zeros (N + 1)

s print (np.shape (ts) ,np.shape(ys))

ys [0] = y_init
variance = np.zeros(N+1)
allmotions = np.zeros ((num_sims ,N+1))

#numba is used to compile code into machine language, as python
interpreter is slow
@jit (nopython=True,fastmath=True)

; def loop(num_sims,ts,t_init, dt,ys,allmotions):

for j in range(num_sims):
for i in range(l, ts.size):
t = t_init + (i - 1) * dt
y = ysli - 1]
ys[i] = y + np.random.normal (loc=0.0, scale=np.sqrt(dt
))
allmotions[j] = ys
return ys, allmotions

ys, allmotions = loop(num_sims,ts,t_init,dt,ys,allmotions)

#plot one of the motions:
plt.plot(ts, ys, lw=0.5, c=’green’)

#calculation of variance using all the runs
for j in range(l,ts.size):
variance[j] = np.var(allmotions[:,j])

#--- below variance is plotted ----- #

maxt= int (0.04243/dt)

print (maxt)

iteratedlog = np.sqrt(2*np.multiply(ts[l:maxt],np.log(np.log(np.
reciprocal (ts[1:maxt])))))

iteratedlog2 = np.sqrt(np.multiply(2*ts , np.log(np.log(ts))))

47 plt.plot(ts,variance, 1lw=0.5, c=’black’, label=f’Calculated

variance from {num_sims} runs.’)

plt.plot(ts[1:maxt], iteratedlog, ’b--’, 1lw=0.7, label =r’$\pm \
sqrt{2n\log{\log{\frac{1}{t}}}}$’)

plt.plot(ts[1:maxt], -iteratedlog, ’b--’, 1lw=0.7)

#plt.plot(ts, iteratedlog2, ’b--’, 1lw=0.7)

28

66

68

plt.legend ()

s plt.title("Brownian Motion")

plt.xlabel ("Time (s)")
plt.ylabel ("Velocity", rotation=’vertical’)

; plt .minorticks_on ()
7 plt.grid(which=’both’)

plt.savefig(’stdbrownl’,dpi=600)

#---- plot probability density below ---- #
plt.clf ()

prdens_time = (1, 50, 150, N)

styledict = (°-’,°-=7,2=.7,72=7)

bins = np.linspace(-1, 1, 100)

for j in prdens_time: #plotting prob density for velocity at times
in prdens_time
hist, _ = np.histogram(np.reshape(allmotions[:,j],-1), bins=
bins, density =True)
plt.plot ((bins[1:] + bins[:-1]) / 2, hist,dict(zip(prdens_time

,styledict)) [j],label=f"t={j * dt:.2f}")

plt.legend ()

plt.title("Velocity distribution at different times")
plt.xlabel ("Velocity")

plt.ylabel ("Probability", rotation=’vertical’)
plt.savefig(’stdbrown2’)

5.2.1 Khinchin’s Law

import numpy as np

import matplotlib.pyplot as plt
from numba import jit

import time

import gc

num_sims = 10000 # Number of runs to evaluate
length = (10%%*4) #number of time iterations to process in one
chunk

t_init = 0
t_end =1000

dt = 0.001
N = int((t_end - t_init)/dt) #this many grid points will be
calculated

y_init = 0

print (£"{N} iterations for {num_sims} trials will being processed.
II)

print (£"{int (N/length)} chunks will be processed. Each chunk has {
length} timesteps.")

29

i ts = np.arange(t_init, t_end, dt) #timestep array

if (N%length != 0):
raise Exception("Length not compatible. Change either N or
length such that N is divisible by length.")
def mainfunction(dt,N,num_sims,y_init,length):
if (N%length != 0):
raise Exception("Length not compatible. Change either N or
length such that N is divisible by length.")

tempprob, tempposmaxvalue = np.zeros(length) ,np.zeros((length,
num_sims))
np.savetxt (’test.txt’, [])

probability=np.array ([])
y = y_init

with open(’test.txt’, ’a’) as posmaxvaluefile:
for i in range(int (N/length)):
tempprob, tempposmaxvalue,y = loop(dt,length,num_sims,
y,1i)

np.savetxt (posmaxvaluefile, tempposmaxvalue, delimiter

probability = np.hstack ((probability , tempprob))

del (tempprob ,tempposmaxvalue)

gc.collect ()

print (£"{(i+1)*100/(int(N/length))}% done.")
return probability

s @jit (nopython=True ,fastmath=True, parallel=True)
def loop(dt,N,num_sims,y_init ,i):
posmaxvalue = np.zeros ((N,num_sims))
probability = np.zeros (N)
y=np.zeros (num_sims) + y_init
Dt = np.sqrt(dt)
k=2.719+1i*xN*dt
for j in range(N):
y += np.random.normal (0,Dt,num_sims)
temp = np.absolute(posmaxvalue[j-1,:])>np.absolute(y)
posmaxvalue[j,:] = np.absolute(np.multiply(“temp,y) + np.
multiply (temp, posmaxvalue[j-1,:]1))
k=k+dt
probability[j] = np.sum(np.absolute(y)>np.sqrt (2*kx*np.log(
np.log(k))))/num_sims

return probability,posmaxvalue,y
timeO0 = time.time ()
probability = mainfunction(dt,N,num_sims,y_init,length)

; print ("Simulation done in: " ,time.time()-timeO, ". Proceeding with
plotting.")

30

59 Al Ll PLOT KHINCHIN’s PROB w/ TIME ------- #

60 plt.xlabel("Time")

61 plt.ylabel ("Probability", rotation=’vertical’)

62 plt.title(f"Probability of Brownian motion crossing \n the
Khinchin’s law boundary - {num_sims} samples", name=’CMU Sans
Serif’)

63 plt.plot(ts[:N],probability,lw=0.5)

6+ plt.savefig(’stdbrownitlog’, dpi=600)

66

67 HEEEEET T PLOT LIM SUP OF POSITION ------------ #
68

60 cols=50

0o plt.clf ()

gc.collect ()
for i in range(int(num_sims/cols)):
j=[i*cols+k for k in range(cols)]

74 temp = np.loadtxt(’test.txt’, usecols=j, delimiter=’,’)

75 for k in range(cols):

76 plt.plot(ts[:N], temp[:N,k], 1lw=0.5)

77 del (temp)

78 gc.collect ()

79 print (£"{(i+1)*cols} / {num_sims} done.", ’\r’)

s0 iteratedlog2 = np.sqrt(np.multiply(2*x(ts+2.719) , np.log(np.log(
ts+2.719))))

s1 plt.plot(ts, iteratedlog2, ’k--’, 1lw=0.9, label =r’$\pm \sqrt{2n\
log{\log{t}}}$°)

s2 plt.xlabel ("Time (sec)")

s3 plt.ylabel("Position")

sa plt.title("Brownian Motion - 200 samples \n lim sup of absolute
position")

s5 plt.savefig(’iteratedlogruns’, dpi=600)

s6 gc.collect ()

~ ~ -~ =~
¢ o

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from numba import jit

i num_sims = 100000 # Number of runs to evaluate

6 t_init = 0

7 t_end =1.0001

s dt = 0.0001

o N = int((t_end - t_init)/dt) #this many grid points will be
calculated

10 y_init = 0
11 prdens_time = (1, 50, 150, N)

31

13

14

15

ts = np.arange(t_init, t_end, dt) #timestep array
#0jit (nopython=True ,fastmath=True)
def loop(dt,N,num_sims,y_init):
pos = np.zeros(num_sims) +y_init
Dt=np.sqrt(dt)

positivepos=np.zeros(num_sims)
positivetime= np.zeros (num_sims)
maxpostime = np.zeros(num_sims)
maxpostn=np.zeros (num_sims)
signchangetime = np.zeros (num_sims)
lastiter = np.zeros(num_sims).astype (bool)

for j in range(N):
pos += np.random.normal (0,Dt,num_sims)
thisiter = pos>0
temp = (lastiter-thisiter).astype(bool)
temp = np.logical_xor(lastiter ,thisiter)
signchangetime = np.multiply(signchangetime, temp) + tempk*

lastiter = thisiter
positivetime += thisiter

temp = maxpostn > pos

maxpostime = np.multiply(maxpostime,temp) + ~tempx*j

maxpostn = np.multiply(maxpostn,temp) + np.multiply(pos,”
temp)

return positivetime ,maxpostime,signchangetime
positivetime ,maxpostime,signchangetime = 1oop(dt,N,num_sims,y_init

)

positivetime = positivetimex*dt

3 maxpostime = maxpostimex*xdt

signchangetime = signchangetimex*dt

s plt.title(r"First arcsine law - $10°4$ samples")

plt.xlabel ("Time")

plt.ylabel (’Probability’)

bins = np.linspace(0,1,100)

hist,_ = np.histogram(positivetime, bins = bins, density=True)
plt.plot ((bins[1:] + bins[:-1]) / 2, hist, ’k-’, lw=1)
plt.savefig(’arcsinepositivetime’)

plt.clf ()

plt.title(r"Second arcsine law - $10°4$ samples")
plt.xlabel ("Time")

plt.ylabel (’Probability’)

32

60

bins = np.linspace(0,1,100)

hist,_ = np.histogram(maxpostime, bins = bins, density=True)
plt.plot ((bins[1:] + bins[:-1]) / 2, hist, ’r-’, lw=1)
plt.savefig(’arcsinemaxpostime’)

plt.clf ()

5 plt.title(r"Third arcsine law - $10°4$ samples")

plt.xlabel ("Time")

7 plt.ylabel (’Probability’)

bins = np.linspace(0,1,100)

hist,_ = np.histogram(signchangetime, bins = bins, density=True)
plt.plot ((bins[1:] + bins[:-1]) / 2, hist, ’g-’, lw=1)
plt.savefig(’arcsinesignchangetime’, dpi=600)

5.2.2 with reflecting walls

import numpy as np

import matplotlib.pyplot as plt
from numba import jit

import time

timeO=time.time ()

num_sims = 100000 # Number of runs to evaluate

t_init = 0

t_end =2

dt = 0.001

walll , wall2 = 0.5,-0.5

N = int((t_end - t_init)/dt) #this many grid points will be

calculated

5 y_init = O
; prdens_time = (0, int(0.03/dt), int(0.05/dt),int (0.09/dt),int (0.1/

dt), int(0.15/dt), N-1)
Styledict = (7_),)__),)_.),J_),)__J,)_.7’ P})

ts = np.arange(t_init, t_end, dt) #timestep array
probdenspos = np.zeros ((np.size(prdens_time) ,num_sims))
@jit (nopython=True ,fastmath=True)
def loop(dt,N,num_sims,y_init,prdens_time ,probdenspos):
posonerun = np.zeros(N) + y_init
variance = np.zeros(N)

y=np.zeros (num_sims)

Dt = np.sqrt(dt)

i=0

for j in range(N):
y += np.random.normal (0,Dt,num_sims)
temp = (y<wall2)

33

temp2 = np.multiply ((2*wall2-np.multiply(y,temp)),temp)
y = np.multiply(“temp,y) + temp2
temp = (y>walll)
temp2 = np.multiply ((2*walll - np.multiply(y,temp)),temp)
y = np.multiply(“temp,y) + temp2
variance[j] = np.var(y)
posonerun[j]l = y[0]
if j in prdens_time:
probdenspos[i,:] =y
i+=1

return posonerun,variance,probdenspos
posonerun,variance ,probdenspos = loop(dt,N,num_sims,y_init,

prdens_time ,probdenspos)

#plot one of the motions:
print (np.shape(ts) ,np.shape(posonerun))
plt.plot(ts[0:N], posonerun,’g-’ ,lw=0.5)

#--- below variance is plotted -----

iteratedlog2 = np.sqrt(np.multiply(2*ts , np.log(np.log(ts))))

; # maxt = int (40/dt)

plt.plot(ts[:maxt],variance[:maxt], 1lw=0.5, c=’black’, label=f’
Calculated variance from {num_sims} runs.’)

plt.plot(ts, iteratedlog2, ’b--’, 1lw=0.7, label =r’$\pm \sqrt{2t\
log{\log{t}}}$’)

plt.plot(ts, -iteratedlog2, ’b--’, 1lw=0.7)

plt.legend ()
plt.title("Brownian Motion")

5 plt.xlabel("Time (s)")

plt.ylabel ("Position", rotation=’vertical’)

5 plt.minorticks_on ()

plt.grid (which=’both’)
plt.savefig(’teststdl’,dpi=600)

#---- plot probability density below ---- #
plt.clf ()

bins = np.linspace(-1, 1, 100)

i=0

for j in prdens_time: #plotting prob demnsity for velocity at times
in prdens_time
hist, = np.histogram(np.reshape (probdenspos[i,:],-1), bins=

34

88

89

90

91

93

96

bins, density =True)

plt.plot ((bins[1:] + bins[:-1]) / 2, hist,dict(zip(prdens_time
,styledict)) [j],label=f"t={j * dt:.2f}")

i+=1

plt.legend ()

plt.title("Position distribution at different times")
plt.xlabel ("Position")

plt.ylabel ("Probability", rotation=’vertical’)
plt.savefig(’teststd2’,dpi=600)

s plt.clf)

bins = np.linspace(0.2, 0.6, 20)

i=0
for j in prdens_time: #plotting prob density for velocity at times
in prdens_time
hist, _ = np.histogram(np.reshape(probdenspos[i,:],-1), bins=
bins, density =True)
plt.plot ((bins[1:] + bins[:-1]) / 2, hist,label=f"t={j * dt:.2
£3")

i+=1

plt.legend ()

plt.title("Position distribution at different times")
plt.xlabel ("Position")

plt.ylabel ("Probability", rotation=’vertical’)
plt.savefig(’teststd3’)

print (f"done in {time.time () -timeO}")
5.3 Euler-Mayurama
5.3.1 without drift

import numpy as np
import matplotlib.pyplot as plt
from numba import jit

num_sims = 10000 # Number of runs to evaluate

t_init = 0

t_end =1

dt = 0.001

N = int((t_end - t_init)/dt) #this many grid points will be
calculated

y_init = 0

#--- All physical constants we need for the simulation ---#

35

mass = 1
gamma
Gamma

nn
o

ts = np.arange(t_init, t_end + dt, dt) #timestep array
ys = np.zeros(N + 1)

ys [0] = y_init

variance = np.zeros(N+1)

allmotions = np.zeros ((num_sims ,N+1))

5 #numba is used to compile code into machine language, as python

interpreter is slow
@jit (nopython=True,fastmath=True)
def loop(num_sims,ts,t_init, dt,ys,allmotions, gamma, Gamma, mass)

for j in range(num_sims):
for i in range(l, ts.size):
t = t_init + (i - 1) * dt
y = ysl[i - 1]
ys[i] = y + -gammax*(y) * dt + np.sqrt(Gamma)/mass * np
.random.normal (loc=0.0, scale=np.sqrt(dt))
allmotions[j] = ys
return ys, allmotions

ys, allmotions = loop(num_sims,ts,t_init,dt,ys,allmotions, gamma,
Gamma, mass)

#plot one of the motions:
plt.plot(ts, ys, lw=0.5, c=’green’)

#calculation of variance using all the runs
for j in range(l,ts.size):
variance[j] = np.var(allmotions[:,j])

#--- below variance is plotted ----- #

plt.plot(ts,variance, 1lw=0.5, c=’black’, label=f’Calculated
variance from {num_sims} runs.’)

plt.plot(ts,Gamma/(2*mass*mass*xgamma) * (l-np.exp(-2*xgammax*ts)),
lw=0.5, c="red", label=’Theoretical variance’)

plt.legend ()

plt.title("Brownian Motion")

plt.xlabel ("Time (s)")

plt.ylabel ("Velocity", rotation=’vertical’)
plt.minorticks_on ()

plt.grid (which="both’)
plt.savefig(’images/stbrownmot.png’,dpi=600)

36

64

7 #---- plot probability density below ---- #

plt.clf ()
prdens_time = (1, 50, 150, N)
styledict = (’°-’,7-=7,°2-.2,7=-7)

bins = np.linspace(-1, 1, 100)

3 for j in prdens_time: #plotting prob density for velocity at times

in prdens_time

hist, _ = np.histogram(np.reshape(allmotions([:,j],-1), bins=
bins, density =True)

plt.plot ((bins[1:] + bins[:-1]) / 2, hist,dict(zip(prdens_time

,styledict)) [j]l,label=f"t={j * dt:.2f}")

7 plt.legend ()

plt.title("Velocity distribution at different times")
plt.xlabel ("Velocity")

plt.ylabel ("Probability", rotation=’vertical’)
plt.savefig(’images/stdbrown-probdist’)

5.3.2 with drift
import numpy as np
import matplotlib.pyplot as plt

from numba import jit
num_sims = 10000 # Number of runs to evaluate

t_init = 0

t_end = 5

dt = 0.001

N = int((t_end - t_init)/dt) #this many grid points will be
calculated

y_init = 0

#--- All physical constants we need for the simulation ---#
mass = 1

gamma = 3

mu = 30

Gamma = 4*mu* gamma

ts = np.arange(t_init, t_end + dt, dt) #timestep array
ys = np.zeros(N + 1)

ys[0] = y_init

variance = np.zeros(N+1)

allmotions = np.zeros ((num_sims ,N+1))

#numba is used to compile code into machine language, as python

37

interpreter is slow
27 @jit (nopython=True ,fastmath=True)
28 def loop(num_sims,ts,t_init, dt,ys,allmotions, gamma, Gamma, mass)

29 for j in range(num_sims):

30 for i in range(l, ts.size):

31 t = t_init + (i - 1) = dt
32 y = ys[i - 1]

33 ys[i]l] = y -gamma*(y-mu) * dt + np.sqrt(Gamma)/mass *
np.random.normal (loc=0.0, scale=np.sqrt(dt))
34 allmotions [j] = ys

35 return ys, allmotions

37 ys, allmotions = loop(num_sims,ts,t_init,dt,ys,allmotions, gamma ,
Gamma , mass)

30 #plot one of the motions:
0 plt.plot(ts, ys, 1lw=0.5, c=’green’)

42 #calculation of variance using all the runs
43 for j in range(l,ts.size):
14 variance[j] = np.var(allmotions([:,j])

16 #-—— below variance is plotted ----- #

7 plt.plot(ts,variance, lw=0.5, c=’black’, label=f’Calculated
variance from {num_sims} runs.’)

15 plt.plot(ts,Gamma/(2*mass*mass*xgamma) * (l-np.exp(-2*xgammax*ts)),
lw=0.5, c="red", label=’Theoretical variance’)

19 print (np.size(ts))

50 plt.plot (ts,np.zeros(np.size(ts))+mu, ’b-.’, lw=0.6,label=’Mean
velocity’)

52 plt.legend ()

53 plt.title("Brownian Motion")

54 plt.xlabel ("Time (s)")

55 plt.ylabel("Velocity", rotation=’vertical’)
56 plt.minorticks_on ()

57 plt.grid(which=’both’)

58 plt.savefig(’stbrownmotwdrift.png’,dpi=600)

60 #———-—- plot probability density below ---- #
61 plt.clf O

62 prdens_time = (1, 50, 150, N)

63 styledict = (’-’,’-=",’-.7,7-7)

64« bins = np.linspace(-10, 60, 100)

65

66 for j in prdens_time: #plotting prob density for velocity at times
in prdens_time

67 hist, = np.histogram(np.reshape(allmotions[:,j],-1), bins=

38

bins, density =True)
plt.plot ((bins[1:] + bins[:-11) / 2,

plt.legend ()

hist ,dict(zip(prdens_time
,styledict)) [j],label=f"t={j * dt:.2f}")

plt.title("Velocity distribution at different times")

plt.xlabel ("Velocity")

plt.savefig(’stdbrown-probdistwdrift’)

5.3.3 with walls

import numpy as np

import matplotlib.pyplot as plt
import time

from numba import jit

prdens_time = (0, int (0.005/(gammax*dt)),
(0.2/(gammaxdt)), int(T/dt)-1)

3 plt.ylabel ("Probability", rotation=’vertical’)

int (0.05/(gammax*dt)),

#the times at which probability density will be plotted

probdensvel = np.zeros((np.size(prdens_time) ,ntrials))
probdenspos = np.zeros ((np.size(prdens_time) ,ntrials))

#L0OOP EXPLAINED:

39

----- All physical variables -------
mass = 1
gamma = 0.1
mu = 2 # Mean velocity (affects drift)
#(don’t put O here)
Gamma = 2*((mu*mass)**2) * gamma
##---- All Simulation variables ----- #
init_pos = 0
init_vel = 0
5 wall2, walll = -1,1 # Wall coordinates in x
dt = .001 # Time step.
T = 10 # Total time in seconds.
¢ ntrials=10000 # number of brownian motions to do
#--— - #
n = int(T / dt) # Number of time steps.
timeO = time.time ()
print ("number of time steps = ",n)
print ("number of trials = ", ntrials)
- Initialisation------------- #
vel = np.zeros((l,ntrials))+init_vel
; postn = init_pos+np.zeros((1l,ntrials))

int

69

#
#

tempwall returns the boolean array indicating if particle has
reached out of wall

temp holds the array of new negative velocities at the true
locations indicated by tempwall, rest are zero

new vel gets upddated by normal laws, but only the ones which
are within limits, i.e. false in tempwall i.e. “tempwall

then just add temp to new vel to reverse the required velocities

position is updated and saved onto file

@jit (nopython=True,fastmath=True)
def loop(vel,postn,probdensvel ,probdenspos, gamma, Gamma ,mass ,n,mu,

dt) :

i=0

gammaloop = gammax*dt

sigmaloop = np.sqrt(Gamma)/mass
variancevel = np.zeros(n)
variancepos = np.zeros(n)
velonerun = np.zeros(n)
posonerun = np.zeros(n)

Dt=np.sqrt(dt)
for j in range(mn):
if j in prdens_time:
probdensvel[i,:] = (vel[O0,:])
probdenspos[i, :] (postn[0,:])
i+=1
tempwall = (postn[0,:] > walll) + (postn[0,:] < wall2)
temp = np.multiply(vel[O0,:],-1*x(tempwall))
vel[0,:] = np.multiply((vel[O0,:] -(vel[O,:]-mu)*gammaloop
+sigmaloop*np.random.normal (0,Dt,size=(1,ntrials))), tempwall)
vel[0,:] += temp
postn[0,:] = postn[0,:]+ vel[O0,:]*dt
variancevel [j] = np.var(np.reshape(vel,-1))
variancepos[j] = np.var(postn[0,:])
velonerun[j] = vel[0,0]
posonerun[j] postn [0,0]

return velonerun,posonerun ,variancevel ,variancepos ,probdensvel
,probdenspos

velonerun ,posonerun,variancevel ,variancepos ,probdensvel,

probdenspos = loop(vel,postn,probdensvel ,probdenspos, gamma,
Gamma ,mass ,n,mu,dt)

timeO=time.time () -timeO

3 print ("Calculations done in ", timeO, "seconds. Now starting
plotting...")
H ooooossss Simplatien Ehncleecl=cssocessossocossosssosssss #

timeO=time.time ()

40

90

101

113

116
117

118

T H# - block related to plotting ----------- #

t = np.linspace(0., T, n) # array of time for plotting x axis
fig, axs = plt.subplots(2,2 , figsize=(20,10))

axs [0,0] .set_title(’Brownian Motion(velocity)’)

axs [0,0] . grid(b=True, which=’major’, color=’grey’, linestyle=’-’)
axs [0,0] . grid(b=True, which=’minor’, color=’grey’, linestyle=’--’)
axs [0,0] .minorticks_on ()

axs [0,1].set_title(’Brownian Motion(position)’)

; axs [0,1].grid(b=True, which=’major’, color=’grey’, linestyle=’-’)

axs [0,1] . grid(b=True, which=’minor’, color=’grey’, linestyle=’--’)
axs [0,1] .minorticks_on ()
axs [1,0].set_title(’Velocity\’s probability density at different

times’)
axs[1,1].set_title(’Position\’s probability density at different
times’)
styledict = (’-’,’-=7,2=.7 2= 7-.7)
> axs [0,0]
A e #
5 #-———— plotting position and velocity wrt time ------ #

7 axs [0,0] .plot(t, np.zeros(n), c=’black’, lw=0.5) #refrence line

axs [0,1].plot(t,posonerun, lw=0.5)

axs [0,0] .plot(t,velonerun, lw=0.5, c=’purple’, label=f"Velocity")

axs [0,0] .plot(t,variancevel[:n], c=’red’, 1lw=0.5, label=f"
Calculated Variance")

axs [0,0] . plot(t,(mu*x*2)*(1l-np.exp(-2*gamma*t)),’-.’,c="g’,1lw=0.5,
label=f"Theoretical Variance")

axs [0,0].legend ()

axs [0,0] .xaxis.set_major_locator (plt.MaxNLocator (10))

axs [0,0] . yaxis.set_major_locator (plt.MaxNLocator (10))

axs [0,0] .set_xlabel ("t (seconds)")

axs [0,0] .set_ylabel("Velocity", rotation=90)

#---- plotting prob density of velocity and position----- #
bins = np.linspace(-1, 4, 100)
i=0

2 for j in prdens_time: #plotting prob density for velocity at times

in prdens_time

hist, _ = np.histogram(np.reshape(probdensvel[i,:],-1), bins=
bins, density =True)

axs [1,0].plot((bins[1:] + bins[:-1]) / 2, hist,dict(zip(
prdens_time ,styledict)) [j],label=£f"t={j * dt:.2f}")

axs [1,0].legend ()

i +=1

bins = np.linspace (-2, 2, 100)

41

122

i=0

for j in prdens_time: #only for these times create histogram
hist, _ = np.histogram(np.reshape(probdenspos[i,:],-1), bins=
bins, density =True)
axs[1,1].plot((bins[1:] + bins[:-1]) / 2, hist,dict(zip(
prdens_time ,styledict)) [j],label=f"t={j * dt:.2f}")
axs[1,1].1legend ()
i+=1

5 plt.title(f’Brownian Motion for {T} seconds.’)
; plt.savefig(’test.png’,dpi=600)

print ("Time spent in plotting = ", time.time()-timeO, "seconds.")

5.4 fBm

import numpy as np
import matplotlib.pyplot as plt

def autcovar(x,H,C=1):
Defines the covariance of fBm.
Input -> x : index , H : hurst parameter, C : scale (default
=1).
Ouput -> covariance
autocovariance = C*x*2 /2 * ((abs(x-1))**x(2*xH) + (abs(x+1))
*% (2%H) -2%(abs (x))**x(2xH))
return autocovariance

def fGn_hosking(N,H,init_pos=0):

Generates fractional gaussian noise using hosking’s recursion

method.
Input -> H: hurst index, N : number of samples to generate,
init_pos : initial sample of noise.

OQutput -> (N+1)xl array of £fGn

Initialisation of all parameters

mu = autcovar (1,H) * init_pos
var = l1-autcovar (1,H) *x*2
var = 1

d = np.zeros(N)
d[0] = autcovar (1,H)

X = np.zeros(N+1)

x[0] = init_pos

x[1] = np.random.normal (mu,np.sqrt(var))
¢ = [autcovar(i,H) for i in range(1,N)]

for i in range(2,N+1):
tau = np.dot(c[0:1i-2] ,np.flip(d[0:i-2]))

42

phi = (autcovar(i,H) -

tau) /var

var = (var - phi**2 * var)
d[0:i-2] = d[0:i-2] - phi* np.flip(d[0:i-2])

d[0:i-1] = phi

mu = np.dot(d[0:i-1] ,np.flip(x[0:1i-1]1))
x[i] = np.random.normal (mu,np.sqrt(var))

return x

def fGn_cholesky(N,H):

nmnn

Generates fractional gaussian noise using cholesky’s

decomposition method.
Input -> H: hurst index, N

number of samples to generate,

init_pos : initial sample of noise.

Output -> (N+1)xl1l array of £fGn

Gamma = np.zeros ((N,N))
Gamma = [[autcovar(j-i,H) for i in range(j+1)] for j in
range (N)]

for i in range(N):

for j in range(i+1): Gammal[i, j]

cov = np.linalg.cholesky (Gamma)
x = np.dot(cov, np.array(np.random.normal(0,1,N)).transpose())
X = np.squeeze (x)

return x

7 dt=0.001

N = int(1/dt)

fig,axs = plt.subplots(3, figsize=(15,10))

y=np.cumsum (fGn_hosking (N,0.2))
t = np.linspace(0,1,y.size)

axs [0].legend ()

y=np.cumsum (fGn_hosking (N,0.5))
t = np.linspace(0,1,y.size)

autcovar (i-j,H)

5 axs [0] . plot(t,y,label="H=0.2",1lw=1,c=’green’)

axs [1] .plot(t,y,label="H=0.5’,1lw=1,c="black’)

axs [1].legend ()

3 y=np.cumsum (fGn_hosking(N,0.8))

t = np.linspace(0,1,y.size)

axs [2] .plot(t,y,label="H=0.8’,lw=1,c=’red’)

axs [2].legend ()

43

plt.savefig(’fbmhosking.png’,dpi=600)
plt.clf ()

fig,axs = plt.subplots(3, figsize=(15,10))

5 y=np.cumsum (fGn_cholesky (N,0.2))

t = np.linspace(0,1,y.size)
axs [0] .plot(t,y,label="H=0.2’,lw=1,c=’green’)

s axs [0].legend ()

) y=np.cumsum(fGn_cholesky(N,0.5))

t = np.linspace(0,1,y.size)

> axs [1].plot(t,y,label="H=0.5’,1lw=1,c="black’)

axs [1].legend ()

5 y=np.cumsum(fGn_cholesky (N,0.8))

t = np.linspace(0,1,y.size)
axs [2] .plot(t,y,label="H=0.8’,lw=1,c="red’)
axs [2].1legend ()

plt.savefig(’fbmcholesky.png’,dpi=600)

44

	Brownian Motion
	Formal definition
	Statistical properties
	Background
	Limit of random walk
	Einstein's treatment (brief)

	Langevin Model
	Fluctuation - Dissipation balance
	Velocity correlation
	Mean and variance of velocity
	Mean and variance of position
	In three dimensions
	Probability density function of velocity
	Probability density function of position

	Fokker Planck Equation
	High friction limit

	Simulations of Brownian Motion
	Random walk
	Standard Brownian Motion
	Khinchin's Law of Iterated Logarithm
	Arc-Sine Laws
	S.B.M. with reflecting walls

	Euler-Mayurama method
	Without Drift
	With Drift
	With reflecting walls

	Fractional Brownian Motion
	Simulation of fBm
	Hosking's Method
	Cholesky Method

	Code
	Random Walk
	Standard Brownian Motion
	Khinchin's Law
	with reflecting walls

	Euler-Mayurama
	without drift
	with drift
	with walls

	fBm

